Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Environ Manage ; 355: 120402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428183

RESUMO

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Assuntos
Microplásticos , Plásticos , Genes Bacterianos , Rios , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ciprofloxacina , Água , Biofilmes
2.
J Hazard Mater ; 469: 133901, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430602

RESUMO

Dissolved organic matter (DOM), which is ubiquitously distributed in groundwater, has a crucial role in the fate and reactivity of iron materials. However, there is a lack of direct evidence on how different DOMs interact with nFe/Ni in promoting or inhibiting the dechlorination efficiency of chlorinated aromatic contaminants. By comparing humic acid (HA), fulvic acid (FA), and biochar-derived dissolved organic matter (BDOM) at different pyrolysis temperatures, we first demonstrated that the dechlorination effect of nFe/Ni on 2,4-dichlorophenol (2,4-DCP) depended on the nature of DOMs and their adsorption on nFe/Ni. HA showed an enhancing effect on the dechlorination of 2,4-DCP by nFe/Ni, while the inhibition effect of other DOMs resulted in the following dechlorination order: BDOM300 ≈FA>BDOM700 ≈BDOM500. The C2 component with higher aromaticity and molecular weight promoted the corrosion of nFe/Ni and the production of reactive hydrogen atoms (H*). The effects of different DOMs on nFe/Ni include that (1) HA accelerates the corrosion and H* production of nFe/Ni, (2) FA and BDOM300 enhance the corrosion but inhibit H* production, and (3) Both nFe/Ni corrosion and H* formation are suppressed by BDOM500/BDOM700. Therefore, this study will provide a reference for understanding the nature of DOM-nFe/Ni interaction and improving the catalytic activity of nFe/Ni when different DOMs coexist in practical applications.

3.
J Hazard Mater ; 467: 133696, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341889

RESUMO

Accumulation of microplastics (MPs) and cadmium (Cd) are ubiquitous in paddy soil. However, the combined effects of MPs and Cd on physiochemical and microbial mechanisms in soils and the attendant implications for greenhouse gas (GHG) emissions, remain largely unknown. Here, we evaluated the influence of polylactic acid (PLA) and polyethylene (PE) MPs on GHG emissions from Cd-contaminated paddy soil using a microcosm experiment under waterlogged and drained conditions. The results showed that PLA significantly increased CH4 and N2O emission fluxes and hence the global warming potential (GWP) of waterlogged soil. Soils treated with MPs+Cd showed significantly reduced GWP compared to those treated only with MPs suggesting that, irrespective of attendant consequences, Cd could alleviate N2O emissions in the presence of MPs. Conversely, the presence of MPs in Cd-contaminated soils tended to alleviate the bioavailability of Cd. Based on a structural equation model analysis, both the MPs-derived dissolved organic matter and the soil bioavailable Cd affected indirectly on soil GHG emissions through their direct influencing on microbial abundance (e.g., Firmicutes, Nitrospirota bacteria). These findings provide new insights into the assessment of GHG emissions and soil/cereal security in response to MPs and Cd coexistence that behaved antagonistically with respect to adverse ecological effects in paddy systems.

4.
Sci Total Environ ; 915: 170043, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218483

RESUMO

Dissolved organic matter (DOM) released from biochar (BDOM) can interact with microplastics (MPs) in the environment, inevitably affecting their environmental behaviour. Information regarding the influence of BDOM on MPs during photoaging and associated variations in the MP aging mechanism remains unclear. This study evaluated the effect of BDOM on the aging of polystyrene (PS) MPs. The results showed that among three pyrolysis temperatures, low-temperature BDOM significantly enhanced the photoaging process of PS MPs, with the smallest average particle size and highest carbonyl index value after 15 days of aging under light conditions. The DOM level decreased after 5 days, increased after 5-10 days, and stabilised after 15 d. BDOM accelerates PS MPs aging, leading to more DOM released from PS, which can be transformed into 1O2 via triplet-excited state (3DOM⁎ and 3PS⁎) to further enhance PS MPs aging, resulting in the realisation of the self-accelerated aging process of PS MPs. 1O2 plays a crucial role in the self-motivated accelerated aging process of PS MPs. These findings provide new insights into the effects of the DOM structure and composition on reactive oxygen species generation during MPs aging.

5.
Ecotoxicol Environ Saf ; 271: 115979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244511

RESUMO

Micro/nanoplastics (M/NPs) in water have raised global concern due to their potential environmental risks. To reestablish a M/NPs free world, enormous attempts have been made toward employing chemical technologies for their removal in water. This review comprehensively summarizes the advances in chemical degradation approaches for M/NPs elimination. It details and discusses promising techniques, including photo-based technologies, Fenton-based reaction, electrochemical oxidation, and novel micro/nanomotors approaches. Subsequently, critical influence factors, such as properties of M/NPs and operating factors, are analyzed in this review specifically. Finally, it concludes by addressing the current challenges and future perspectives in chemical degradation. This review will provide guidance for scientists to further explore novel strategies and develop feasible chemical methods for the improved control and remediation of M/NPs in the future.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Plásticos , Microplásticos , Água , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043822

RESUMO

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Campos de Petróleo e Gás , Solo/química , Amônia/análise , Biodegradação Ambiental , Hidrocarbonetos/análise , Alcanos , Microbiologia do Solo , Poluentes do Solo/análise
7.
Environ Sci Technol ; 58(2): 1010-1021, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934921

RESUMO

Despite the increasing prevalence of atmospheric nanoplastics (NPs), there remains limited research on their phytotoxicity, foliar absorption, and translocation in plants. In this study, we aimed to fill this knowledge gap by investigating the physiological effects of tomato leaves exposed to differently charged NPs and foliar absorption and translocation of NPs. We found that positively charged NPs caused more pronounced physiological effects, including growth inhibition, increased antioxidant enzyme activity, and altered gene expression and metabolite composition and even significantly changed the structure and composition of the phyllosphere microbial community. Also, differently charged NPs exhibited differential foliar absorption and translocation, with the positively charged NPs penetrating more into the leaves and dispersing uniformly within the mesophyll cells. Additionally, NPs absorbed by the leaves were able to translocate to the roots. These findings provide important insights into the interactions between atmospheric NPs and crop plants and demonstrate that NPs' accumulation in crops could negatively impact agricultural production and food safety.


Assuntos
Antioxidantes , Microplásticos
8.
Water Res ; 249: 120973, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071903

RESUMO

The corrosion and surface passivation of sulfidized zero-valent iron (S-ZVI) by common groundwater ions and contaminants are considered to be the most challenging aspects in the application of S-ZVI for remediation of chlorinated contaminants. This study investigated the impacts of corrosive chloride (Cl-) and passivation of hexavalent chromium (Cr(VI)) on the long-term reactivity, selectivity, corrosion behavior, and physicochemical properties during the 60-day aging process of S-ZVI. Although the co-existing of Cl- promoted the initial reactivity of S-ZVI, the rapid consumption of Fe° content shortened the reactive lifetime owing to the insufficient electron capacity. Severe passivation by Cr(VI) (30 mg L-1) preserved the Fe° content but significantly interfered with the reductive sulfur species, resulting in an increase in electron transfer resistance. In comparison, minor passivated S-ZVI (5.0 mg L-1 Cr(VI)) inhibited the hydrogen evolution while concurrently mitigating the further oxidation of the reductive iron and sulfur species, which significantly enhanced the long-term reactivity and selectivity of S-ZVI. Furthermore, the enhancement effect of minor passivation could be detected in the aging processes of one-step, two-step, and mechanochemically synthesized S-ZVI particles with different S/Fe ratios and precursors, which further verified the advantages of minor passivation. This observation is inspirable for the development of innovative strategies for environmental remediation by S-ZVI-based materials.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Ferro/química , Corrosão , Poluentes Químicos da Água/química , Cromo , Cloretos , Halogênios , Enxofre
9.
Water Res ; 250: 121064, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154336

RESUMO

Microplastics (MPs) have emerged as a novel and highly concerning contaminant that is ubiquitous in the aqueous environment. However, the aging of MPs induced by dissolved organic matter (DOM), especially biochar-derived dissolved organic matter (BDOM), and the biological toxicity after aging are not fully understood. In this study, the effects of biochar-derived BDOMs on the photoaging and biotoxicity of MPs were investigated at different pyrolysis temperatures using micro-scale polyethylene (PE) as an example. The results showed that the amount of ·OH generated by the BDOM/PE systems was related to the molecular composition and structure of BDOMs. High temperature BDOM7/9 with less lignin-like (34.33 % / 41.80 %) and more lipid (24.58 % / 19.88 %) content could produce more ·OH by itself, and its binding ability with PE was weaker due to its less hydrophobic components (SUVA260 = 0.10 / 0.11), which resulted in a weaker shading effect and less inhibition of the system, thus resulting in more ·OH production in the high temperature BDOM7/9/PE system. However, the involvement of BDOM, although favoring the long-term stable ·OH production of the system, did not significantly promote the photoaging of MPs. Furthermore, combined in vivo and in vitro biotoxicity studies of MPs showed that photoaging PE with the involvement of BDOM greatly improved systemic inflammation and tissue damage, as well as reactive oxygen species (ROS, such as ·OH and -OH)-induced cell death. For example, the addition of BDOM5/PE-light reduced the cell death of human lung, liver, and kidney cells from 54.70 %, 69.39 %, and 48.35 % to 22.78 %, 33.13 %, and 25.83 %, respectively, compared to the PE-light group. The results of this study contribute to an in-depth understanding of the environmental behavior of BDOM and MPs systems.


Assuntos
Carvão Vegetal , Matéria Orgânica Dissolvida , Microplásticos , Humanos , Microplásticos/toxicidade , Plásticos , Temperatura , Pirólise , Polietileno , Envelhecimento
10.
Chemosphere ; 340: 139801, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574086

RESUMO

Combination of microbial fuel cell (MFC) and advanced oxidation process (AOP) is promising for pollutant removal. In this paper, Cu0-loaded carbon cloth cathode by electrodeposition (Cu@CC-PS-MFC) was applied to enhance 2,4-dichlorophenol (2,4-DCP) degradation based on persulfate (PS) activation in microbial fuel cell. Cu0 exhibited a typical structure of face-centered cubic metal polyhedron on carbon cloth. The removal of 2,4-DCP by Cu@CC-PS-MFC (75.6%) was enhanced by more than 50% compared to CC-PS-MFC (49.2%) after 1 h of reaction. 30 mg/L 2,4-DCP in Cu@CC-PS-MFC was completely removed and achieved a high mineralization (80.6%) after 9 h of reaction under optimized condition with low dissolved copper ion concentration (0.615 mg/L). Meanwhile, more than 90% removal of 2,4-DCP was stably achieved with flow operation condition (hydraulic residence time of 7.2 h). The change of copper valent state Cu0/Cu2O/CuO was the main mechanism of PS activation with main reactive species of O•H and O21. The bioanode of MFC enhanced the in-situ regeneration of ≡Cu+ and ≡Cu0 on the catalyst surface by transporting electrons, which was believed to contribute to good catalyst lifetime and excellent 2,4-DCP removal. Electrodeposited copper contributes to the enhanced degradation of 2,4-DCP with energy recovery at the same time which can further broaden the application MFC.


Assuntos
Fontes de Energia Bioelétrica , Clorofenóis , Cobre/química , Oxirredução
11.
J Hazard Mater ; 460: 132343, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639795

RESUMO

Because of the excellent properties, plastics have been widely used in the past decades and caused serious environmental issues. As an excellent substitute for conventional plastics, the biodegradable plastics have attracted increasing attention. However, biodegradable plastics may produce more micro/nanoplastics in the short time compared with conventional plastics, and cause more serious ecological risks. In this study, the short-term toxicity of nanoplastics released from biodegradable and conventional plastics on Streptomyces coelicolor M145 was investigated. After 30 days of degradation, the biodegradable microplastics, polylactic acid (PLA) and polyhydroxyalkanoates (PHA) released more secondary nanoplastics than conventional microplastics, polystyrene (PS). After exposure, PLA and PHA nanoplastics showed significant toxicity to M145. The survival rate of M145 cells was 16.1% after treatment with PLA nanoplastics for 7 days (PLA-7). The toxicity of PHA was lower than that of PLA. This might have been due to the agglomeration of PHA nanoplastics in the solution. Compared with the controls, the PS secondary nanoplastics showed no significant toxicity to M145. After the treatment, the production of antibiotics, actinorhodin (ACT) and undecylprodigiosin (RED), significantly increased. The yields of ACT and RED reached their maximum values after treatment with PLA-7, which were 4.2-fold and 2.1-fold higher than those of the controls, respectively. The addition of biodegradable nanoplastics significantly increased the expression of these key pathway-specific regulatory genes, leading to increased antibiotic production. This study provides toxicological insights into the impacts of conventional and biodegradable microplastics on S. coelicolor.


Assuntos
Plásticos Biodegradáveis , Streptomyces coelicolor , Microplásticos/toxicidade , Streptomyces coelicolor/genética , Poliésteres/toxicidade , Poliestirenos/toxicidade , Antibacterianos
12.
Sci Total Environ ; 897: 165397, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429478

RESUMO

Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/análise , Melhoramento Vegetal , Metais Pesados/análise , Produtos Agrícolas/metabolismo , Solo/química
13.
J Hazard Mater ; 458: 132028, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459757

RESUMO

Post-sulfidated nanoscale zero-valent iron with a controlled FeSX shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI. These properties endowed S-nZVI/BC with highly reactive (∼8.9-13.2 times) and selective (∼58.4-228.9 times) over nZVI/BC in TBBPA transformation. BC modification improved the reactivity and selectivity of S-nZVI by 1.77 and 1.96 times, respectively. The difference of S-nZVI/BC in reactivity was related to hydrophobicity and electron transfer, particularly FeSX shell thickness and morphology. Optimal shell thickness of ∼32 nm allowed the maximum association between Fe0 core and exterior FeSX, resulting in superior reactivity. A thicker shell with abundant networks increased the roughness but decreased the surface area and electron transfer. The higher [S/Fe]surface and [S/Fe]particle were conducive to the selectivity, and [S/Fe]particle was more influential than [S/Fe]surface on selectivity upon similar hydrophobicity. The solvent kinetic isotope effects (SKIEs) exhibited that increasing [S/Fe]dose tuned the relative contributions of atomic H and electron in TBBPA debromination but failed to alter the dominant debromination pathway (i.e., direct electron transfer) in (S)-nZVI/BC systems. Mechanism of electron transfer rather than atomic H contributed to higher selectivity. This work demonstrated that S-nZVI/BC was a prospective material for the remediation of TBBPA-contaminated groundwater.

14.
J Hazard Mater ; 459: 132099, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517232

RESUMO

As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.


Assuntos
Poluentes Ambientais , Microplásticos , Plásticos , Genes Bacterianos , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Biofilmes
15.
J Environ Manage ; 344: 118546, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418916

RESUMO

Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Polifenóis , Flavonoides , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
16.
Environ Sci Technol ; 57(28): 10319-10330, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37369363

RESUMO

Liquid crystal display (LCD) screens can release many organic pollutants into the indoor environment, including liquid crystal monomers (LCMs), which have been proposed as a novel class of emerging pollutants. Knowing the release pathways and mechanisms of LCMs from various components of LCD screens is important to accurately assess the LCM release and reveal their environmental transport behavior and fate in the ambient environment. A total of 47, 43, and 33 out of 64 target LCMs were detected in three disassembled parts of waste smartphone screens, including the LCM layer (LL), light guide plate (LGP), and screen protector (SP), respectively. Correlation analysis confirmed LL was the source of LCMs detected in LGP and SP. The emission factors of LCMs from waste screen, SP, and LGP parts were estimated as 2.38 × 10-3, 1.36 × 10-3, and 1.02 × 10-3, respectively. A mechanism model was developed to describe the release behaviors of LCMs from waste screens, where three characteristics parameters of released LCMs, including average mass proportion (AP), predicted subcooled vapor pressures (PL), and octanol-air partitioning coefficients (Koa), involving coexistence of absorption and adsorption mechanisms, could control the diffusion-partitioning. The released LCMs in LGP could reach diffusion-partition equilibrium more quickly than those in SP, indicating that LCM release could be mainly governed through SP diffusions.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Cristais Líquidos , Poluentes Atmosféricos/análise , Smartphone , Monitoramento Ambiental
17.
J Hazard Mater ; 458: 131881, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379603

RESUMO

The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Anaerobiose , Ferro , Clorofenóis/metabolismo , Biodegradação Ambiental , Purificação da Água/métodos
18.
Sci Total Environ ; 885: 163740, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146832

RESUMO

1The combination of carbonaceous materials and microbial degradation is an attractive measure in improving the removal efficiency of organic pollutants in water environment. In this study, the anaerobic dechlorination in a coupled system of ball-milled plastic chars (BMPCs) and the microbial consortium were investigated. The anaerobic microorganism cultured from raw sludge (CAM) contributed to the dechlorination of the 2,4,6-trichlorophenol (2,4,6-TCP) into 4-chlorophenol (4-CP) as the final product via ortho-dechlorination in all testing groups. The dechlorination rate was accelerated in different BMBC plus CAM groups than that in only CAM group (0.048 d-1), of which, it was greater in BMPC-500 plus CAM group (0.375 d-1) than that in BMPC-700 plus CAM group (0.171 d-1). The electron exchange capacity (EEC) of BMPCs decreased with the increase of pyrolysis temperature (0.053 mmol e-/g for BMPC-500 and 0.037 mmol e-/g for BMPC-700), which directly affected anaerobic dechlorination. Direct interspecies electron transfer (DIET) of BMPCs also boosted the biogas yield by 1.5 times compared to that without BMPCs. Microbial community analysis illustrated that BMPCs helped to enrich the putative dechlorinating bacteria. The abundance of Clostridium_aenus_stricto_12, as a dominant dechlorinator, significantly increased from 0.02 % to 11.3 % (without BMPCs), 39.76 % (BMPC-500) and 9.3 % (BMPC-700), and followed by, Prevotella and Megaspheara, which was reported to take part in anaerobic dechlorination and digestion as H2 producers, also increased in the presence of BMPC. This study contributes to the realization of 2,4,6-TCP in-situ reduction technology and provides a scientific reference for anaerobic dechlorination by cultured anaerobes combined with BMPCs.


Assuntos
Bactérias Anaeróbias , Elétrons , Anaerobiose , Bactérias Anaeróbias/metabolismo , Água/metabolismo , Biodegradação Ambiental
19.
Sci Total Environ ; 875: 162680, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889405

RESUMO

Silicon nanoparticles (SiNPs) have been widely used to immobilize toxic trace metal(loid)s (TTMs) in contaminated croplands. However, the effect and mechanisms of SiNP application on TTM transportation in response to phytolith formation and phytolith-encapsulated-TTM (PhytTTM) production in plants are unclear. This study demonstrates the promotion effect of SiNP amendment on phytolith development and explores the associated mechanisms of TTM encapsulation in wheat phytoliths grown on multi-TTM contaminated soil. The bioconcentration factors between organic tissues and phytoliths of As and Cr (> 1) were significantly higher than those of Cd, Pb, Zn and Cu, and about 10 % and 40 % of the total As and Cr that bioaccumulated in wheat organic tissues were encapsulated into the corresponding phytoliths under high-level SiNP treatment. These observations demonstrate that the potential interaction of plant silica with TTMs is highly variable among elements, with As and Cr being the two most strongly concentrated TTMs in the phytoliths of wheat treated with SiNPs. The qualitative and semi-quantitative analyses of the phytoliths extracted from wheat tissues suggest that the high pore space and surface area (≈ 200 m2 g-1) of phytolith particles could have contributed to the embedding of TTMs during silica gel polymerization and concentration to form PhytTTMs. The abundant SiO functional groups and high silicate-minerals in phytoliths are dominant chemical mechanisms for the preferential encapsulation of TTMs (i.e., As and Cr) by wheat phytoliths. Notably, the organic carbon and bioavailable Si of soils and the translocation of minerals from soil to plant aerial parts can impact TTM sequestration by phytoliths. Thus, this study has implications for the distribution or detoxification of TTMs in plants via preferential PhytTTM production and biogeochemical cycling of PhytTTMs in contaminated cropland following exogenous Si supplementation.


Assuntos
Silício , Triticum , Silicatos , Plantas , Minerais , Metais , Solo
20.
Sci Total Environ ; 879: 163011, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965728

RESUMO

Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...